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A method for calculating t rans ient  heat t r ans fe r  by radiat ion and conduction in a slab of a gray 
absorbing medium is discussed.  The resu l t s  a re  given f rom calculations of the cooling of a 
slab having a t r ansparen t  upper boundary and a diffusely ref lect ing lower boundary in contact 
with an opaque mater ia l .  

The calculation of the cooling of a radia t ively  semi t ransparen t  mater ia l  having an initially high t empera -  
ture  (as in the case of, e.g.,  molten glass) entails the solution of the t ransient  problem of simultaneous heat 
t r ans fe r  by heat conduction and radiat ion.  The calculation of t ransient  mixed heat t r ans fe r  has been undertaken 
in a number of papers ,  the authors  of which adopted two main approaches;  some [1, 2] l inearize the problem, 
i.e.,  a ssume a pr ior i  the p resence  of a small  differential t empera ture ,  while others  [3-5] use i terative methods, 
the convergence of which is governed by the choice of zeroth  approximation.  I terat ive methods, as a rule,  en-  
tail a la rge  volume of computational operat ions,  par t icu lar ly  when one takes into consideration the selective 
nature of absorption in the medium and the t empera tu re  dependence of the thermophysica l  charac te r i s t i cs .  

In this paper we part i t ion the main layer  (slab) into a number of sublayers  and introduce an average 
t empera tu re  for each sublayer  to reduce  the problem to the solution of a sys tem of nonlinear f i r s t -o rde r  
ord inary  differential equations descr ib ing the t ime variat ion of the average t empera tu res .  

We propose to calculate the cooling of a slab whose upper boundary is t ransparent  to radiation. At the 
lower boundary, which is diffusely ref lect ing,  we have radiat ion and conduction heat t ransfer  with an opaque 
thermal ly  conducting mater ia l  (Fig. 1). 

Simultaneous radiat ion and conduction heat t r ans fe r  in a nondissipative gray slab is descr ibed by the 
sys tem of equations [6] 

with the boundary conditions 
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We thus a r r ive  at the problem of determining functions T(y, t) and I+(y, 0, t) satisfying the sys tem (1), 
(2), the boundary conditions (3)-(6), and a cer tain given initial t empera ture  distribution T(y, 0). 

Part i t ioning the slab into M auxil iary sublayers  and averaging the energy-balance  equation (2) over the 
thickness of the i- th sublayer ,  we obtain the sys tem of equations 
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An expression for Ii+(hi , O, t) and It-(0 , O, t) can be obtained, because Eq. (1) admits  a solution in explicit form.  

We next assume that the absorption coefficient k(Ti) can be represented  by a Taylor se r ies  about Ti*. 
Up to second-order  t e rms ,  the expression for the radiation intensity at the boundary of the i- th sublayer 
acquires the form 

l+(hl, O, t)=- lb(T*)-~-dd@(T*)6T,(y' ) exp cos0 ] cos0 dY'-[-l+(O' O, t) exp~-- cos0 (8) 
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Here 6T~ (g) = T~(g, t ) - -  T* (t). An analogous expression is observed for If(0, 0, t). Inasmuch as  the radiation 
leaving the sublayer is the entering radiation relat ive to the next sublayer,  we have the recurs ion  relat ions 

~+(o, o, t) = I,+,+ (h,+,, o, t), l ~ < i < M ;  

I7 (h,, O, t )=  I7_~ (0, O, t), 1<~. i ~  M. 
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Here IT(hi, 0, t), I+(0, 0, t) are  determined from the boundary conditions (3) and (4). 

The l inear approximation of the thickness tempera ture  profile in the sublayer with respect  to Ti* and the 
sublayer boundary tempera ture  T0i enables us to ca r ry  out the integration in an expression of the type (8). The 
sublayer boundary tempera ture  T0i in this ease can be approximately expressed in t e rms  of Ti(0, t), Ti*(t), 
T~_l(t) on the basis  of the boundary condition (6) and the recurs ion  re la t ions  

TM (0, t) = T O (0, t); T~_~ (0, t) = To. 1 < i < M. 

Thus, relat ions (9) bring us to the sys tem of equations for the average t empera tu res  
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In carrying out the integration in (10) we encounter the well-known tabulated integral  exponential functions 
z~/2 

E~ (x) = S exp (-- x/cos 0) cosn-20 sin 0d0. 
0 

With the application of the difference approximation for the tempera ture  gradient  at the boundaries of the 
sublayer: 
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Fig. 1. Cooling scheme of the r ad ia t ive ly  s e m i t r a n s p a r e n t  s lab.  1) Sur -  
rounding space;  2) s e m i t r a n s p a r e n t  medium;  3) opaque m a t e r i a l .  

Fig. 2. P ro f i l e s  of  the t e m p e r a t u r e  | in a s lab between i so the rma l  ideal ly 
black walls at va r ious  t i m e s  ~. 1, 2) Exact  solution of the s t e ady - s t a t e  
p rob l em  for N = 0.1 and 0.01, r e spec t i ve ly .  
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Fig.  3. T e m p e r a t u r e  dis t r ibut ion T (~ along 
the coordinate  y (m) in the s e m i t r a n s p a r e n t  
med ium (1) and in the opaque ma te r i a l  (2-4) at 
different  t imes  t (sec).  a) For  a n i d e a l l y b l a c k  
sur face  y = 0, ~ = 1; b) for  a re f lec t ing  sur face  
y = O ,  ~=0.15. 
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and condition (5), the sys tem (10) compr i ses  a sys tem of M nonlinear f i r s t -o rde r  ordinary  differential equa- 
tions for Ti*(t), which can be solved numerica l ly .  It is requi red  in this connection to specify the mode of 
determination of To(0, t). 

Figure 2 shows the resu l t s  of a calculation of the t empera tu re  stabilization p rocess  in a semi t ransparen t  
slab between isothermal  ideally black walls.  For  the solution we used the Merson modification of the R u n g e -  
Kutta numerical  procedure  with automatic selection of the computing t ime step on a BESM-6 digital computer .  
Here the choice of nonuniform part i t ion of the main slab into auxil iary sublayers  {hi} was dictated by the con- 
dition of obtaining identical t rans ient  t empera tu re  profi les  within 0.5% l imits  with variat ion of the thicknesses  
h i. For  compar ison with previous solutions we reduced the resu l t s  to dimensionless  form (O = T/To,  ~ = tk2Xs/ 
pc). For  var ious  values of the pa ramete r  N = khs/4n2crT3o, charac ter iz ing  the ra t io  between conduction and 

radiation heat t ransfer ,  the stabilized solutions a re  close to the exact solution obtained in [7] for the s teady-  

state case.  

When the heat t r ans fe r  at the lower boundary is stipulated by conditions (6) the sys tem (10) is augmented 
with a sys tem of differential equations for the average t empera tu res  over the thickness of the auxil iary layers  
in the opaque mater ia l .  This sys tem is obtained with the use of the difference approximation for the t e m p e r a -  
tare  gradient at the boundaries of the sublayer [by analogy with (11)], the second boundary condition (6), and the 
hea t - t r ans fe r  conditions at the lower boundary of the opaque mater ia l .  The tempera ture  To(0, t) is determined 
by extrapolating the tempera ture  profile in the opaque mater ia l  to its surface .  

Figure 3 shows the resu l t s  of a calculation of the cooling of a g lass  slab (with a t ransparent  top surface) 
poured onto a bottom pan consist ing of layers  of a highly conducting opaque mater ia l  (the s t ructure  of the pan 
f rom top to bottom compr i ses  0.03 m graphite,  0.05 m steel,  and 0.13 m pig iron). The distribution observed 
at the end of pouring of the slab is taken as the initial distribution. The heat t ransfer  between layers  of the 
bottom pan is assumed to be radiat ive insofar as gaps are  crea ted  between the l ayers  as a resu l t  of their  
thermal  deformation.  It is assumed that heat leaves the bottom surface of the pan in accordance  with the law 
of radiation heat t r ans fe r  with a surrounding medium of t empera tu re  T a. The following values of the p a r a m -  
e ters  are used in the calculations: H = 0.9 m; k = 20 m- l ;  n = 1.5; k s = 1.17 W / m . K ;  c = 1.17.103 J / k g . K ;  
p = 2.44 �9 103 kg/m3; T a = 293~ 

The curves  in Fig.  3a cor respond  to the case in which the bottom surface (y = 0) is ideally black (e = 
1), and the curves  in Fig. 3b to the case  of a bottom surface compris ing ref lect ive foil (e = 0.15). 

A compar ison of the curves of Figs. 3a and b shows that the presence  of ref lect ion at the bottom surface 
induces a large t empera tu re  drop within a thin surface  layer  of the medium. The existence of such a drop is 
attributable to the fact that the opaque mater ia l  has a higher thermal  conductivity than the semi t ransparent  
medium (Xo/X s ~ 120). With an increase  in the ref lect ion of radiant  flux f rom the surface the ra t io  of the t e m -  
perature  gradients  there in the semi t ransparen t  medium and in the opaque mater ia l  must  tend to the inverse  
ra t io  of the thermal  conductivities of these mate r ia l s .  Outside the thin surface layer ,  the presence  of r e f l e c -  
tion at the surface affects the tempera ture  f ieldto dis tances of the order  of four mean free paths (ky = 4). Here 
we have a noticeable trend toward a more  uniform tempera ture  distribution of the medium and slowing of the 
cooling p rocess  in compar ison with the case of an ideally black surface .  The tempera ture  difference in this 

case attains 4%. 

In the regions  adjacent to the upper (transparent) boundary the tempera ture  distribution is determined 
mainly by the hea t - t r ans fe r  conditions there.  Cooling takes place in such a way as to create  at a certain d is -  
tance f rom the boundary a region of large t empera tu re  gradients ,  which pers i s t  for a long period of t ime.  

N O T A T I O N  

y, coordinate;  t, t ime; H, thickness of the slab; T(y, t), t empera ture ;  T a, ambient tempera ture ;  I+(y, 0, t), 
intensity of radiat ion propagating at an acute angle 0 with the inward normal  to the surface y -- 0; I-(y,  0, t), 
intensity of radiat ion propagating at an acute angle 0 with the inward normal  to the surface y = H; Ib(T) = n2crT4/ 
~r, total intensity of ideal blackbody radiation; Qr=2nf I cos0sin0de, radiant  heat flux density in the direction 
toward the boundary y = 0; T i, t empera tu re  in the i- th~ sublayer;  Ti*, average t empera tu re  in the i-th 
auxiliary sublayer;  I~, radiat ion intensity in the i- th sublayer;  hi, thickness of the i- th sublayer;  T o, t e m p e r a -  
ture  of the opaque mater ia l ;  k, absorption coefficient; n, re f rac t ive  index; c, specific heat; p, density; h s, 
thermal  conductivity of the slab mater ia l ;  Xo, thermal  conductivity of the opaque mater ia l ;  ~, emissivi ty  of the 
surface y = 0; a,  S t e f a n - B o l t z ~ a n n  constant; | dimensionless  tempera ture ;  4, dimensionless  t ime; N, con-  

duc t ion- rad ia t ion  pa ramete r .  
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Generalized relations are derived for determining the thermal efficiency and the outlet tempera- 
ture of tubes in radiative heat exchangers with a nonuniform distribution of heat carrier between 

these tubes. 

Finnedtubula r  r e f r i g e r a t o r - r a d i a t o r  devices  have found broad appl icat ions in va r ious  b ranches  of engin- 
eer ing [1]. A segment  of such a heat  exchanger  cons is t s  of a d i s t r ibu tor  and a co l lec tor  connected through a 
row of tubes with c r o s s p i e c e s  between them.  Finning of tubes through which the heat c a r r i e r  flows with hea t -  
emit t ing c r o s s p i e c e s  makes  it poss ib le  to substant ia l ly  r educe  the meta l  content of a r ad i a to r  and improve  the 
energy  c h a r a c t e r i s t i c s  of the overa l l  hea t - exchanger  sys tem.  

In this study the the rmohydrau l i c  c h a r a c t e r i s t i c s  of r a d i a t o r s  and the effect  of a nonuniform distr ibut ion 
of heat  c a r r i e r  between the i r  tubes on the i r  t h e r m a l  eff ic iency will be cons idered .  

The t he rma l  c h a r a c t e r i s t i c s  of r ad ia t ive  r e f r i g e r a t o r s  with a un i form dis t r ibut ion of heat c a r r i e r  between 
tubes have a l r eady  been studied [2, 3]. tn one study- [3] the t e m p e r a t u r e  f ields over  the w id tho fa  c r o s s p i e c e  
as  well as the dependence of the t h e r m a l  eff ic iency of a r a d i a t o r  e l emen t  with finning (Fig. 1) on the rmophys ica l  
and geome t r i ca l  p a r a m e t e r s  of tubes and c r o s s p i e c e s  in the  case  of r a d i a t o r s  with black su r f aces  were  d e t e r -  
mined.  Analogous s tudies  were  made  [2] of diffusely emit t ing and absorb ing  g ray  su r f aces .  

E l sewhere  [4] the r e s u l t s  of s tudies  made per ta in ing  to the eff ic iency of finned tubular  r ad ia to r  e lements  
with tubes at unequal t e m p e r a t u r e s  were  r e p o r t e d .  The t h e r m a l  eff ic iency of a r ad i a to r  e lement  He is defined 
as the ra t io  of the amount  of heat emi t ted  by it into the surrounding space  to the amount of heat emit ted by a 
pe r fec t ly  black plate of width 2(R + L) at a t e m p e r a t u r e  equal to that of the hot ter  tube.  

The d imens ion less  t e m p e r a t u r e  field over  the width of a c r o s s p i e c e  is desc r ibed  by the equation 

d~Of _ e~V ( 0 ~ -  ~f inc) dZ2 (I) 
with the boundary conditions 

X ~ O, Of = O~ = 1, X = 2, Of =02. (2) 
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